Потенциальной энергией называется энергия, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела.

Потенциальной энергией, например, обладает тело, поднятое над Землей, потому что энергия тела зависит от взаимного положения его и Земли и их взаимного притяжения. Потенциальная энергия тела, лежащего на Земле, равна нулю. А потенциальная энергия этого тела, поднятого на некоторую высоту, определится работой, которую совершит сила тяжести при падении тела на Землю. Огромной потенциальной энергией обладает речная вода, удерживаемая плотиной. Падая вниз, она совершает работу, приводя в движение мощные турбины электростанций.

Потенциальную энергию тела обозначают символом E п.

Так как E п = A, то

E п = Fh

E п = gmh

E п – потенциальная энергия; g – ускорение свободного падения, равное 9,8 Н/кг; m – масса тела, h – высота, на которую поднято тело.

Кинетической энергией называется энергия, которой обладает тело вследствие своего движения.

Кинетическая энергия тела зависит от его скорости и массы. Например, чем больше скорость падения воды в реке и чем больше масса этой воды, тем сильнее будут вращаться турбины электростанций.

mv 2
E k = --
2

E k – кинетическая энергия; m – масса тела; v – скорость движения тела.

В природе, технике, быту один вид механической энергии обычно превращается в другой: потенциальная в кинетическую и кинетическая в потенциальную.

Например, при падении воды с плотины ее потенциальная энергия превращается в кинетическую. В качающемся маятнике периодически эти виды энергии переходят друг в друга.

Мышцы, приводящие в движение звенья тела, совершают механическую работу.

Работа в некотором направлении – это произведение силы (F), действующей в направлении перемещения тела на пройденный им путь (S): А = F S.

Выполнение работы требует энергии. Следовательно, при выполнении работы энергия в системе уменьшается. Поскольку для того чтобы была совершена работа, необходим запас энергии, последнюю можно определить следующим образом: Энергия это возможность совершить работу, это некоторая мера имеющегося в механической системе « ресурса» для её выполнения . Кроме того, энергия – это мера перехода одного вида движения в другой.

В биомеханике рассматривают следующие основные виды энергии :

Потенциальная, зависящая от взаимного расположения элементов механической системы тела человека;

Кинетическая поступательного движения;

Кинетическая вращательного движения;

Потенциальная деформации элементов системы;

Тепловая;

Обменных процессов.

Полная энергия биомеханической системы равна сумме всех перечисленных видов энергии.

Поднимая тело, сжимая пружину, можно накопить энергию в форме потенциальной для последующего её использования. Потенциальная энергия всегда связана с той или иной силой, действующей со стороны одного тела на другое. Например, Земля силой тяжести действует на падающий предмет, сжатая пружина – на шарик, натянутая тетива – на стрелу.

Потенциальная энергия это энергия, которой обладает тело благодаря своему положению по отношению к другим телам, или благодаря взаимному расположению частей одного тела .

Стало быть сила тяготения и упругая сила являются потенциальными.

Гравитационная потенциальная энергия: Еп = m g h

Где k – жёсткость пружины; х – её деформация.

Из приведённых примеров видно, что энергию можно накопить в форме потенциальной энергии (поднять тело, сжать пружину) для последующего использования.

В биомеханике рассматривают и учитывают два вида потенциальной энергии: обусловленную взаимным расположением звеньев тела к поверхности Земли (гравитационная потенциальная энергия); связанную с упругой деформацией элементов биомеханической системы (кости, мышцы, связки) или каких-либо внешних объектов (спортивных снарядов, инвентаря).

Кинетическая энергия запасается в теле при движении. Движущееся тело совершает работу за счёт её убыли. Поскольку звенья тела и тело человека совершают поступательное и вращательное движения, суммарная кинетическая энергия (Ек) будет равна: , где m – масса, V – линейная скорость, J – момент инерции системы, ω – угловая скорость.

Энергия поступает в биомеханическую систему за счёт протекания в мышцах метаболических обменных процессов. Изменение энергии, в результате которого совершается работа, не является высокоэффективным процессом в биомеханической системе, то есть не вся энергия переходит в полезную работу. Часть энергии теряется необратимо, переходя в тепло: только 25 % используется для выполнения работы, остальные 75 % преобразуются и рассеиваются в организме.

Для биомеханической системы применяют закон сохранения энергии механического движения в форме:

Епол = Ек + Епот + U,

где Епол – полная механическая энергия системы; Ек – кинетическая энергия системы; Епот – потенциальная энергия системы; U – внутренняя энергия системы, представляющая в основном тепловую энергию.

Полная энергия механического движения биомеханической системы имеет в своей основе два следующих источника энергии: метаболические реакции в организме человека и механическая энергия внешней среды (деформирующихся элементов спортивных снарядов, инвентаря, опорных поверхностей; противников при контактных взаимодействиях). Передаётся эта энергия посредством внешних сил.

Особенностью энергопродукции в биомеханической системе является то, что одна часть энергии при движении расходуется на совершение необходимого двигательного действия, другая идёт на необратимое рассеивание запасённой энергии, третья сохраняется и используется при последующем движении. При расчёте затрачиваемой при движениях энергии и совершаемой при этом механической работы тело человека представляют в виде модели многозвеньевой биомеханической системы, аналогичной анатомическому строению. Движения отдельного звена и движения тела в целом рассматривают в виде двух более простых видов движения: поступательного и вращательного.

Полную механическую энергию некоторого i-го звена (Епол) можно подсчитать как сумму потенциальной (Епот) и кинетической энергии (Ек). В свою очередь Ек можно представить как сумму кинетической энергии центра масс звена (Ек.ц.м.), в которой сосредоточена вся масса звена, и кинетической энергии вращения звена относительно центра масс (Ек. Вр.).

Если известна кинематика движения звена, это общее выражение для полной энергии звена будет иметь вид: , где mi – масса i-го звена; ĝ – ускорение свободного падения; hi – высота центра масс над некоторым нулевым уровнем (например, над поверхностью Земли в данном месте); - скорость поступательного движения центра масс; Ji – момент инерции i- го звена относительно мгновенной оси вращения, проходящей через центр масс; ω – мгновенная угловая скорость вращения относительно мгновенной оси.

Работа по изменению полной механической энергии звена (Аi) за время работы от момента t1 до момента t2 равна разности значений энергии в конечный (Еп(t2)) и начальный (Еп(t1)) моменты движения:

Естественно, в данном случае работа затрачивается на изменение потенциальной и кинетической энергии звена.

Если величина работы Аi > 0, то есть энергия увеличилась, то говорят, что над звеном совершена положительная работа. Если же Аi < 0, то есть энергия звена уменьшилась, - отрицательная работа.

Режим работы по изменению энергии данного звена называется преодолевающим, если мышцы совершают положительную работу над звеном; уступающим, если мышцы совершают отрицательную работу над звеном.

Положительная работа совершается, когда мышца сокращается против внешней нагрузки, идёт на разгон звеньев тела, тела в целом, спортивных снарядов и т. д. Отрицательная работа совершается, если мышцы противодействуют растяжению за счёт действия внешних сил. Это происходит при опускании груза, спуска по лестнице, противодействии силе, превышающей силу мышц (например в армрестлинге).

Замечены интересные факты соотношения положительной и отрицательной работ мышц: отрицательная работа мышц экономичней положительной; предварительное выполнение отрицательной работы повышает величину и экономичность следующей за ней положительной работы.

Чем больше скорость передвижения тела человека (во время легкоатлетического бега, бега на коньках, бега на лыжах и т. п.), тем большая часть работ затрачивается не на полезный результат - перемещение тела в пространстве, а на перемещение звеньев относительно ОЦМ. Поэтому при скоростных режимах основная работа тратится на разгон и торможение звеньев тела, так как с ростом скорости резко растут ускорения движения звеньев тела.

С понятием работы тесно связано другое фундаментальное физическое понятие – понятие энергии. Поскольку в механике изучается, во-первых, движение тел, а во-вторых, взаимодействие тел между собой, то принято различать два вида механической энергии: кинетическую энергию , обусловленную движением тела, и потенциальную энергию , обусловленную взаимодействием тела с другими телами.

Кинетической энергией механической системы называют энергию, з ависящую от скоростей движения точек этой системы.

Выражение для кинетической энергии можно найти, определив работу равнодействующей силы, приложенной к материальной точке. На основании (2.24) запишем формулу для элементарной работы равнодействующей силы:

Так как
, то dА = mυdυ. (2.25)

Чтобы найти работу равнодействующей силы при изменении скорости тела от υ 1 до υ 2 проинтегрируем выражение (2.29):

(2.26)

Так как работа - мера передачи энергии от одного тела другому, то на

основании (2.30) запишем, что величина есть кинетическая энергия

тела:
откуда вместо (1.44) получаем

(2.27)

Теорему, выраженную формулой (2.30) принято называть теоремой о кинетической энергии . В соответствии с ней работа сил, действующих на тело (или систему тел), равна изменению кинетической энергии этого тела (или системы тел).

Из теоремы о кинетической энергии следует физический смысл кинетической энергии : кинетическая энергия тела равна работе, которую оно способно совершать в процессе уменьшения своей скорости до нуля. Чем больше «запас» кинетической энергии у тела, тем большую работу оно способно совершить.

Кинетическая энергия системы равна сумме кинетических энергий материальных точек, из которых эта система состоит:

(2.28)

Если работа всех сил, действующих на тело, положительна, то кинетическая энергия тела возрастает, если работа отрицательна, то кинетическая энергия убывает.

Очевидно, что элементарная работа равнодействующей всех приложенных к телу сил будет равна элементарному изменению кинетической энергии тела:

dА = dЕ к. (2.29)

В заключение заметим, что кинетическая энергия, как и скорость движения, имеет относительный характер. Например, кинетическая энергия пассажира, сидящего в поезде, будет разной, если рассматривать движение относительно полотна дороги или относительно вагона.

§2.7 Потенциальная энергия

Вторым видом механической энергии является потенциальная энергия – энергия, обусловленная взаимодействием тел.

Потенциальная энергия характеризует не любое взаимодействие тел, а лишь такое, которое описывается силами, не зависящими от скорости. Большинство сил (сила тяжести, сила упругости, гравитационные силы и т.д.) именно таковы; исключением являются лишь силы трения. Работа рассматриваемых сил не зависит от формы траектории, а определяется лишь её начальным и конечным положением. Работа таких сил на замкнутой траектории равна нулю.

Силы, работа которых не зависит от формы траектории, а зависит лишь от начального и конечного положения материальной точки (тела) называют потенциальными или консервативными силами .

Если тело взаимодействует со своим окружением посредством потенциальных сил, то для характеристики этого взаимодействия можно ввести понятие потенциальной энергии.

Потенциальной называют энергию, обусловленную взаимодействием тел и зави­сящую от их взаимного расположения.

Найдем потенциальную энергию тела, поднятого над землей. Пусть тело массой m равномерно перемещается в гравитационном поле из положения 1 в положение 2 по поверхности, сечение которой плоскостью чертежа показано на рис. 2.8. Это сечение является траекторией материальной точки (тела). Если трение отсутствует, то на точку дейст­вуют три силы:

1) сила N со стороны поверхности нормально поверхности, работа этой силы равна нулю;

2) сила тяжести mg, работа этой силы А 12 ;

3) сила тяги F со стороны некоторого движущего тела (двигатель внутреннего сгорания, электродвигатель, человек и т. п.); работу этой силы обозначим А T .

Рассмотрим работу силы тяжести при перемещении тела вдоль наклонной плоскости длиной ℓ (рис. 2.9). Как видно из этого рисунка, работа равна

А" = mgℓ соsα = mgℓ соs(90° + α) = - mgℓ sinα

Из треугольника ВСD имеем ℓ sinα = h, по­этому из последней формулы следует:

Траекторию движения тела (см. рис. 2.8) можно схематично представить небольшими участками наклонной плоскости, поэтому для, работы силы тяжести на всей траектории 1 -2 справедливо выражение

A 12 =mg (h 1 -h 2) =-(mg h 2 - mg h 1) (2.30)

Итак, работа силы тяжести не зависит от траектории тела, а зависит от различия в высотах расположения начальной и конечной точек траектории.

Величину

е п = mg h (2.31)

называют потенциальной энергией материальной точки (тела) массой m поднятой над землей на высоту h. Следовательно, формулу (2.30) можно переписать так:

A 12 = =-(En 2 - En 1) или A 12 = =-ΔEn (2.32)

Работа силы тяжести равна взятому с обратным знаком изменению потенциальной энергии тел, т. е. разности ее конечного и начального значений (теорема о потенциальной энергии ).

Подобные рассуждения можно привести и для упруго деформированного тела.

(2.33)

Отметим, что физический смысл имеет разность потенциальных энергий как величина, определяющая работу консервативных сил. В связи с этим безразлично, какому положению, конфигурации, следует приписать нулевую потенциальную энергию.

Из теоремы о потенциальной энергии можно получить одно очень важное следствие: консервативные силы всегда направлены в сторону уменьшения потенциальной энергии. Установленная закономерность проявляется в том, что любая система, предоставленная самой себе, всегда стремится перейти в такое состояние, в котором её потенциальная энергия имеет наименьшее значение. В этом заключается принцип минимума потенциальной энергии .

Если система в данном состоянии не обладает минимальной потенциальной энергией, то это состояние называют энергетически невыгодным .

Если шарик находится на дне вогнутой чаши (рис.2.10,а), где его потенциальная энергия минимальна (по сравнению с ее значениями в соседних положениях), то его состояние более выгодно. Равновесие шарика в этом случае является устойчивым : если сместить шарик в сторону и отпустить, то он снова возвратится в своё первоначальное положение.

Энергетически невыгодным, например, является положение шарика на вершине выпуклой поверхности (рис.2.10, б). Сумма сил, действующих при этом на шарик, равна нулю, и потому, этот шарик будет находится в равновесии. Однако равновесие это является неустойчивым : достаточно малейшего воздействия, чтобы он скатился вниз и тем самым перешёл в состояние энергетически более выгодное, т.е. обладающее меньшей

потенциальной энергией.

При безразличном равновесии (рис. 2.10, в) потенциальная энергия тела равна потенциальной энергии всех его возможных ближайших состояний.

На рисунке 2.11 можно указать некоторую ограниченную область пространства (например cd), в которой потенциальная энергия меньше, чем вне её. Эта область получила название потенциальной ямы .

Чтобы увеличить расстояние тела от центра Земли (поднять тело), над ним следует совершить работу. Эта работа против силы тяжести запасается в виде потенциальной энергии тела.

Для того, чтоб понять что же такое потенциальная энергия тела найдем работу, совершаемую силой тяжести при перемещении тела массой m вертикально вниз с высоты над поверхностью Земли до высоты .

Если разность пренебрежимо мала по сравнению с расстоянием до центра Земли, то силу тяготения во время движения тела можно считать постоянной и равной mg.

Так как перемещение совпадает по направлению с вектором силы тяжести то получается, что , работа силы тяжести равна

Из последней формулы видно, что работа силы тяжести при переносе материальной точки массой m в поле тяготения Земли равна разности двух значений некоторой величины mgh. Поскольку работа есть мера изменения энергии, то в правой части формулы стоит разность двух значений энергии этого тела. Это значит, что величина mgh представляет собой энергию, обусловленную положением тела в поле тяготения Земли.

Энергию, обусловленную взаимным расположением взаимодействующих между собой тел (или частей одного тела), называют потенциальной и обозначают Wp. Следовательно, для тела, находящегося в поле тяготения Земли,

Работа силы тяжести равна изменению потенциальной энергии тела , взятому с противоположным знаком.

Работа силы тяжести не зависит от траектории движения тела и всегда равна произведению модуля силы тяжести на разность высот в начальном и конечном положениях

Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, то есть высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.

При таком выборе нулевого уровня потенциальная энергия тела , находящегося на высоте h над поверхностью Земли, равна произведению массы тела на Модуль ускорения свободного падения и расстояние его от поверхности Земли:

Из всего выше сказанного, можем сделать вывод: потенциальная энергия тела зависит всего от двух величин , а именно: от массы самого тела и высоты, на которую поднято это тело. Траектория движения тела никак не влияет на потенциальную энергию.

Физическая величина, равная половине произведения жесткости тела на квадрат его деформации, называется потенциальной энергией упруго деформированного тела:

Потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

Так же есть:

Кинетическая энергия

В формуле мы использовали.

Потенциальная и кинетическая энергия позволяют охарактеризовать состояние любого тела. Если первая применяется в системах взаимодействующих объектов, то вторая связана с их движением. Эти виды энергии, как правило, рассматриваются тогда, когда сила, связывающая тела, независима от траектории движения. При этом важны только начальное и конечное их положения.

Общие сведения и понятия

Кинетическая энергия системы является одной из важнейших ее характеристик. Физики выделяют два вида такой энергии в зависимости от вида движения:

Поступательная;

Вращения.

Кинетическая энергия (Е к) представляет собой разность между полной энергией системы и энергией покоя. Исходя из этого, можно сказать, что она обусловлена движением системы. Тело имеет ее только тогда, когда оно движется. В состоянии покоя объекта она равняется нулю. Кинетическая энергия любых тел зависит исключительно от скорости движения и их масс. Полная энергия системы находится в прямой зависимости от скорости ее объектов и расстояния между ними.

Основные формулы

В том случае, когда любая сила (F) действует на тело, находящееся в покое так, что оно приходит в движение, можно говорить о совершении работы dA. При этом величина этой энергии dE будет тем выше, чем больше совершается работы. В этом случае верно такое равенство: dA = dE.

С учетом пути, пройденного телом (dR) и его скорости (dU), можно воспользоваться 2 законом Ньютона, исходя из которого: F = (dU/dE)*m.

Вышеуказанный закон используется только тогда, когда имеется инерциальная система отсчета. Существует еще один важный нюанс, учитываемый при расчетах. На значение энергии влияет выбор системы. Так, согласно системе СИ, она измеряется в джоулях (Дж). Кинетическая энергия тела характеризуется массой m, а также скоростью перемещения υ. В этом случае она составит: E k = ((υ*υ)*m)/2.

Исходя из вышеуказанной формулы, можно сделать вывод, что кинетическую энергию определяют массой и скоростью. Иными словами, она представляет собой функцию движения тела.

Энергия в механической системе

Кинетическая энергия представляет собой энергию механической системы. Она зависит от скорости движения ее точек. Данная энергия любой материальной точки представляется такой формулой: E = 1/2mυ 2, где m - масса точки, а υ - ее скорость.

Кинетическая энергия механической системы являет собой арифметическую сумму таких же энергий всех ее точек. Ее также можно выразить следующей формулой: E k = 1/2Mυ c2 + Ec, где υc — скорость центра масс, М - масса системы, Ec - кинетическая энергия системы при движении вокруг центра масс.

Энергия твердого тела

Кинетическая энергия тела, которое движется поступательно, определяется как и такая же энергия точки с массой, равной массе всего тела. Для расчета показателей при перемещении применяются более сложные формулы. Изменение этой энергии системы в момент ее перемещения из одного положения в другое происходит под воздействием приложенных внутренних и внешних сил. Оно равняется сумме работ Aue и A"u данных сил при этом перемещении: E2 - E1 = ∑u Aue + ∑u A"u.

Данное равенство отражает теорему, касающуюся изменения кинетической энергии. С ее помощью решаются самые разные задачи механики. Без этой формулы невозможно решить целый ряд важнейших задач.

Кинетическая энергия при высоких скоростях

Если скорости тела близки к скорости света, кинетическую энергию материальной точки можно рассчитать по следующей формуле:

E = m0c2/√1-υ2/c2 - m0c2,

где с - скорость света в вакууме, m0 - масса точки, m0с2 - энергия точки. При маленькой скорости (υ

Энергия при вращении системы

Во время вращения тела вокруг оси каждый его элементарный объем массой (mi) описывает окружность радиусом ri. В этот момент объем имеет линейную скорость υi. Поскольку рассматривается твердое тело, угловая скорость вращения всех объемов будет одинакова: ω = υ1/r1 = υ2/r2 = … = υn/rn (1).

Кинетическая энергия вращения твердого тела представляет собой сумму всех таких же энергий его элементарных объемов: E = m1υ1 2/2 + miυi 2/2 + … + mnυn 2/2 (2).

При использовании выражения (1), получаем формулу: E = Jz ω 2/2, где Jz - это момент инерции тела вокруг оси Z.

При сравнении всех формул становится ясно, что момент инерции - это и есть мера инертности тела во время вращательного движения. Формула (2) подходит для объектов, вращающихся относительно неподвижной оси.

Плоское движение тела

Кинетическая энергия тела, движущегося вниз по плоскости, складывается из энергии вращения и поступательного движения: E = mυc2/2 + Jz ω 2/2, где m - масса движущегося тела, Jz - момент инерции тела вокруг оси, υc - скорость центра масс, ω - угловая скорость.

Изменение энергии в механической системе

Изменение значения кинетической энергии тесно связано с потенциальной. Суть этого явления можно понять благодаря закону сохранения энергии в системе. Сумма E + dP во время перемещения тела всегда будет одинаковой. Изменение значения E всегда происходит одновременно с изменением dP. Таким образом, они преобразуются, словно перетекая друг в друга. Такое явление можно встретить практически во всех механических системах.

Взаимосвязь энергий

Потенциальная и кинетическая энергии тесно связаны между собой. Их сумму можно представить как полную энергию системы. На молекулярном уровне - это внутренняя энергия тела. Она присутствует постоянно, пока существует хотя бы какое-то взаимодействие между телами и тепловое движение.

Выбор системы отсчета

Для проведения вычисления значения энергии выбирают произвольный момент (его считают начальным) и систему отсчета. Определить точную величину потенциальной энергии возможно только в зоне воздействия сил, которые не зависят от траектории движения тела при совершении работы. В физике данные силы называют консервативными. Они имеют постоянную связь с законом сохранения энергии.

Суть разницы между потенциальной и кинетической энергией

Если внешнее воздействие минимально или сводится к нулю, изучаемая система всегда будет тяготеть к состоянию, в котором ее потенциальная энергия также будет стремиться к нулю. Например, подброшенный вверх мячик достигнет предела этой энергии в верхней точке траектории движения и в тот же момент начнет падать вниз. В это время накопленная в полете энергия преобразуется в движение (выполняемую работу). Для потенциальной энергии в любом случае существует взаимодействие как минимум двух тел (в примере с мячиком гравитация планеты оказывает на него влияние). Кинетическую энергию можно рассчитать индивидуально для любого движущегося тела.

Взаимосвязь разных энергий

Потенциальная и кинетическая энергия изменяются исключительно при взаимодействии тел, когда действующая на тела сила совершает работу, значение которой отлично от нуля. В замкнутой системе работа силы тяготения или упругости равняется изменению потенциальной энергии объектов со знаком «-»: A = - (Ep2 - Ep1).

Работа силы тяготения или упругости равняется изменению энергии: A = Ek2 - Ek1.

Из сравнения обоих равенств ясно, что изменение энергии объектов в замкнутой системе равняется изменению потенциальной энергии и противоположно ему по знаку: Ek2 - Ek1 = - (Ep2 - Ep1), или иначе: Ek1 + Ep1 = Ek2 + Ep2.

Из указанного равенства видно, что сумма этих двух энергий тел в замкнутой механической системе и взаимодействующих силами упругости и тяготения, всегда остается постоянной. Исходя из вышеизложенного, можно сделать вывод о том, что в процессе изучения механической системы следует рассматривать взаимодействие потенциальной и кинетической энергий.